

Cardiovascular Experimental Medicine accelerating proof-of-mechanism and concept

Ian Wilkinson

Experimental Medicine and Immunotherapeutics

Major Decision in R&D Steps in discovering and developing medicines

Adapted from P Vallance

The classical Drug Development Pipeline is in Trouble

Nature Reviews | Drug Discovery

Nature Reviews Drug Discovery 2012; 11:191

Improving the Process

Nature Reviews | Drug Discovery

Nature Reviews Drug Discovery 2010; 9:203

Proof-of-Mechanism

• Demonstrate key aspects of the anticipated pharmacological profile

- 'Drug-target engagement' the first step of translation
- Explore PK/PD relationships assist with dose selection
- Often employs biomarkers
- Often ignored in phase I or IIa 'a missed opportunity'

Biomarkers

• FDA definition

"A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention"

• Uses

Faster proof of concept and better stop/go decisions at early stage of clinical development

• Examples

oCT
oFDG-PET
oMRI/MRS
oBlood pressure
oArterial stiffness
oForearm blood flow
oCRP
oHeat shock protein

Epoxyeicosatrienoic Acids (EETS): Arachadonic acid metabolites

Nature Reviews Drug Discovery 2008; 8: 794

EET: Effects and a Plausible Target

Effects of SEH inhibitors in a Rat Hypertension Model

Clin. Sci. 2009;116: 61

EDHF and Epoxyeicosatrienoic Acids (EETs)

Trends in Pharmacological Sciences 2002;8:374

Forearm Plethysmography and ia Drug Infusion

Agonists and inhibitors

EETs: Agonist responses

UNIVERSITY OF CAMBRIDGE

Yang unpublished data

Vascular EETs Generation in COPD

Yang et al. Chest 2016; in press

SHE Inhibition in Human Vessels ex vivo

BK (Log M)

Yang et al. *Chest* 2016; in press

SEH inhibition

• First time in human clinical trial to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of single and repeat doses of an SEH inhibitor (GSK 2256294) in obese smokers.

Response: 18mg

Yang et al. Chest 2016; in press

Human Endothelins

Physiol Rev2011; 91: 1–77

Endothelins: Integrated physiological effects

Physiol Rev2011; 91: 1–77

Endothelin-1 is a Vasoconstrictor and Regulates Basal Tone in Man

UNIVERSITY OF CAMBRIDGE

Haynes Lancet 1994;344:852

Endothelin Antagonists: prolonged effects

UNIVERSITY OF CAMBRIDGE

Lunnon et al. *BJCP* 2010; 69:252

Proof-of-Concept

• Demonstrate efficacy in modifying the disease process

- ➢ 'Does what it says on the box' − Phase IIa
- > Usually rely on surrogate markers or biomarkers
- Statistical approach 'mini phase 3'

Surrogate Markers

• FDA definition

"a biomarker that is intended to substitute for a clinical endpoint. A surrogate endpoint is expected to predict clinical benefit or harm (or lack of benefit or harm) based on epidemiologic, therapeutic, pathophysiologic, or other scientific evidence"

•Uses

Proof of concept

o Registration

• Examples

oDiastolic blood pressure

oLDL cholesterol

o6 minute walk test

- o(HDL cholesterol)
- o(HbA1c)

Potentially Useful Cardiovascular Surrogates

- Blood pressure
- Endothelial function
- Vascular inflammation
- Aortic stiffness

Table 1	Pooled Adjusted Hazard Ratios (95% CIs) of a 1-SD Increase in Log _e -Transformed aPWV
	for All-Cause Mortality, CVD Mortality, CHD Events, Stroke Events, and CVD Events

	Model 1*	Model 2*	Model 3*
CHD events (n = 1,195)	1.35 (1.22-1.50)	1.32 (1.18-1.48)	1.23 (1.11-1.35)
CVD events (n = 1,785)	1.45 (1.30-1.61)	1.37 (1.23-1.52)	1.30 (1.18-1.43)
Stroke events (n = 641)	1.54 (1.34-1.78)	1.37 (1.21-1.54)	1.28 (1.16-1.42)
CVD mortality (n = 395)	1.41 (1.27-1.56)	1.35 (1.20-1.53)	1.28 (1.15-1.43)
All-cause mortality (n = 2,041)	1.22 (1.16-1.27)	1.20 (1.15-1.26)	1.17 (1.11-1.22)

CAMBRIDGE Perticone Circulation 2070 But Osch 194 Card Mitch Concerts 188 Card Conce

Proof-of-concept in Hypercholesterolaemics Losmapimod a p38 MAPKinase Inhibitor

UNIVERSITY OF

Proof-of-concept in Stable CVD Losmapimod a p38 MAPKinase Inhibitor

Elkhawad JACC Imaging 2012;5:911

Proof-of-concept in NSTEMI Losmapimod a p38 MAPKinase Inhibitor

	Day 3-5		Week 12				
	Adjusted mean*	Difference between groups (95% CI)	Adjusted mean*	Difference between groups (95% CI)			
Infarct size (% of left ventrie	:le)						
All losmapimod	5-93	-2.38 (-5.44 to 0.69), difference -29%	4.13	-2·19 (-4·78 to 0·40), difference -35%			
Placebo	8.31	(p=0·13)	6-32	(p=0·10)			
LVEF (%)							
All losmapimod	56-86	4-72 (-0-06 to 9-51), difference 9%	60-28	5.14 (0.28 to 10.00), difference 9%			
Placebo	52-13	(p=0-05)	55-14	(p=0.0387)			
LVEDV (mL)							
All losmapimod	127-18	–19-89 (–38-74 to –1-03), difference –14%	127-74	-20-09 (-37-01 to -3-18), difference -14%			
Placebo	147-06	(p=0-0390)	147-83	(p=0-0207)			
LVESV (mL)							
All losmapimod	56-13	-15.51 (-28.84 to -2.19), difference -22%	51-47	-16-52 (-28-91 to -4-13), difference -24%			
Placebo	71-65	(p=0-0231)	67-99	(p=0-0098)			
IVEF=left ventricular ejection fraction. IVEDV=left ventricular end-diastolic volume. IVESV=left ventricular end-systolic volume. *Adjusted for baseline troponin I concentration and time from chest-pain onset to treatment.							

Newby Lancet 2012;384:1187

Phase 3 Acute MI

Original Investigation

Effect of Losmapimod on Cardiovascular Outcomes in Patients Hospitalized With Acute Myocardial Infarction A Randomized Clinical Trial

Michelle L. O'Donoghue, MD, MPH; Ruchira Glaser, MD, MSCE; Matthew A. Cavender, MD; Philip E. Aylward, BM, BCh, PhD; Marc P. Bonaca, MD, MPH; Andrzej Budaj, MD, PhD; Richard Y. Davies, MS; Mikael Dellborg, MD; Keith A. A. Fox, MBChB; Jorge Antonio T. Gutierrez, MD; Christian Hamm, MD; Robert G. Kiss, MD, PhD; František Kovar, MD, PhD; Julia F. Kuder, MA; Kyung Ah Im, PhD; John J. Lepore, MD; Jose L. Lopez-Sendon, MD; Ton Oude Ophuis, MD, PhD; Alexandr Parkhomenko, MD; Jennifer B. Shannon, MS; Jindrich Spinar, MD; Jean-Francois Tanguay, MD; Mikhail Ruda, MD, PhD; P. Gabriel Steg, MD; Pierre Theroux, MD; Stephen D. Wiviott, MD; Ian Laws, PhD; Marc S. Sabatine, MD, MPH; David A. Morrow, MD, MPH; for the LATITUDE-TIMI 60 Investigators

Newby JAMA 2016;315:1591

COPD – an Inflammatory Condition?

TABLE 1	Ranking of causes of death after 25 yrs of follow- up of males and females aged 45–64 in the Renfrew and Paisley (MIDSPAN) Study
Ranking	Cause of death %

	Males	Females
1	Coronary beart disease 36	Cancer 30
2	Cancer 30	Coronary heart disease 28
3	Stroke 10	Stroke 15
4	Respiratory 9	Respiratory 8
5	Other 7	Other 9
6	Other cardiovascular disease 6	Other cardiovascular disease 7
7	Digestive 2	Digestive 3

UNIVERSITY OF CAMBRIDGE

Eur Respir J 2006; 27: 627 & PLoS Med 2010; 7(3): e1000220

Lospamimod in COPD: Endothelial Function and Vascular Inflammation

Proof-of-Concept: Lessons

• Biomarker and surrogate validity

- o Accuracy, repeatability, stability
- o Predictive value
- o Predicts effect of Rx

Proof-of-Concept: Lessons

Correct paradigm and disease

- Anti-inflammatory effect is relatively weak (failed in RhA)
 - ✓ Chronic low level inflammation stable CAD, hypercholesterolaemia
 - ★ Acute severe inflammation MI or COPD
- o Anti-inflammatory effect is relatively short-lived
 - ✓ Acute MI
 - X Stable CAD, hypercholesterolaemia

Back Translation

• Understanding why things haven't worked out

- Disprove surrogates or paradigms
- o Invalidate targets
- Better understand disease processes or mechanisms

HDL

UNIVERSITY OF CAMBRIDGE

	Mean (SD) or No. (No. of CVD Cases)	Hazard Ratio ^a (95% Cl)
Conventional risk factors		
Age at survey, y	56.42 (8.41)	1.87 (1.73-2.02)
Sex		
Men	68 520 (7734)	NA ^b
Women	71 061 (4500)	NA ^b
Current smoking		
No	102 261 (7137)	1.0 [Reference]
Yes	37 320 (5097)	1.79 (1.66-1.94)
History of diabetes		
No	131 610 (10 722)	1.0 [Reference]
Yes	7971 (1512)	2.04 (1.76-2.35)
Systolic blood pressure, mm Hg	135.19 (18.38)	1.31 (1.26-1.37)
Traditional lipids, mg/dL		
Total cholesterol	226 (42.5)	1.22 (1.17-1.27)
HDL-C	51.4 (14.7)	0.83 (0.78-0.87)
Triglyceride ^c	115 (80-168) ^d	1.19 (1.15-1.23)

Nature Reviews | Drug Discovery

Effect of HLD Raising Drugs

	No of eve	nts/total				
Study or subgroup	Niacin	Control	Odds ratio M	н,	Weight	Odds ratio M-H,
No statins			random (95%	5 CI)	(76)	random (95% CI)
CDP 5yr data 1975	237/1119	583/2789	+		29.0	1.02 (0.86 to 1.21)
CLAS 1987	0/94	1/94			0.1	0.33 (0.01 to 8.20)
Stockholm 1988	61/279	82/276			7.7	0.66 (0.45 to 0.97)
UCSF-SCOR 1990	0/48	1/49			0.1	0.33 (0.01 to 8.39)
FATS niacin v placebo 1990	0/48	0/52				Not estimable
AFREGS 2005	1/71	2/72			0.2	0.50 (0.04 to 5.64)
Subtotal	299/1659	669/3332	-		37.1	0.86 (0.65 to 1.14)
Test for heterogeneity: $\tau^2=0.0$	2, χ ² =5.09, df=4	, P=0.28, ² =21	%			
Test for overall effect: z=1.05,	P=0.29					
Background statin treatment						
Arbiter 2 2004	1/87	2/80			0.2	0.45 (0.04 to 5.10)
Guyton 2008	0/676	0/272				Not estimable
Sang 2009	0/52	1/56			0.1	0.35 (0.01 to 8.84)
AIM HIGH 2011	96/1718	82/1696	+-		11.7	1.16 (0.86 to 1.58)
HPS 2 Thrive 2013	798/12838	732/12 835			50.9	1.10 (0.99 to 1.22)
Subtotal	895/15 371	817/14 939			62.9	1.10 (1.00 to 1.21)
Test for heterogeneity: Test for heterogeneity:	0, χ ² =1.14, df=3	, P=0.77, I ² =0%				
Test for overall effect: z=1.91,	P=0.06					
Total (95% CI)	1194/17 030	1486/18 271			100.0	1.03 (0.92 to 1.15)
Test for heterogeneity: $\tau^2=0.0$	0, χ ² =9.04, df=8	, P=0.34, ² =12	%			
Test for overall effect: z=0.54,	P=0.59					
Test for subgroup difference: ;	2=2.63, df=1, P	=0.10, l ² =62%	0.01 0.1 1	10 100		
			Favours niacin	Favours contro	L .	

	No of ever	nts/total				
Study or subgroup	CETP inhibitor	Control	Odds r	atio M-H,	Weight	Odds ratio M-H,
Anacetrapib			Tandon	(95% CI)	(70)	random (95% cl)
Define 2010	11/811	8/812	-		5.5	1.38 (0.55 to 3.45)
Subtotal	11/811	8/812	-	-	5.5	1.38 (0.55 to 3.45)
Test for heterogeneity: Not	applicable					
Test for overall effect: z=0.	69, P=0.49					
Dalcetrapib						
Dal-Vessel 2012	0/239	1/237			0.5	0.33 (0.01 to 8.12)
Dal-Plaque 2011	1/64	2/66			0.8	0.51 (0.04 to 5.74)
Dal-Outcomes 2012	226/7938	229/7933		4	57.2	0.99 (0.82 to 1.19)
Subtotal	227/8241	232/8236		+	58.4	0.98 (0.81 to 1.18)
Test for heterogeneity: $\tau^2 =$	0.00, χ ² =0.73, df=2	, P=0.69, I ² =0%				
Test for overall effect: z=0.	23, P=0.82					
Torcetrapib						
Radiance 1 2007	0/450	1/454			0.5	0.34 (0.01 to 8.26)
Radiance 2 2007	1/377	1/375	_		0.6	0.99 (0.06 to 15.96)
Illuminate 2007	93/7533	59/7534			30.9	1.58 (1.14 to 2.20)
Illustrate 2007	8/591	6/597			4.1	1.35 (0.47 to 3.92)
Subtotal	102/8951	67/8960		-	36.1	1.53 (1.12 to 2.09)
Test for heterogeneity: $\tau^2 =$	0.00, χ ² =1.05, df=3	, P=0.79, l ² =0%				
Test for overall effect: z=2.	69, P=0.007					
Total (95% CI)	340/18 003	307/18 008		+	100.0	1.16 (0.93 to 1.45)
Test for heterogeneity: $\tau^2 = 0$	0.01, χ ² =7.91, df=7,	P=0.34, I ² =12%				
Test for overall effect: z=1.	31, P=0.19					
Test for subgroup difference	e: χ ² =6.12, df=2, P	=0.05, I ² =67.4%	0.01 0.1	1 10	100	
			Favours CETP inhibitor	Favours co	ntrol	

	No of ever	nts/total			
Non-fatal myocardial infarction	Intervention	Control	Odds ratio	M-H, 5% (I)	Odds ratio M-H, random (95% CI)
Niacin			Tandoni (9.	770 CI)	random (95% cl)
No background statin	136/1659	394/3332			0.67 (0.54 to 0.82)
Background statin	509/15 371	527/14 939	, _		0.94 (0.83 to 1.06)
Test for heterogeneity: I ² =87%					
Fibrate					
No background statin	773/14 236	1181/15 89	6 🝝		0.72 (0.65 to 0.79)
Background statin	173/2765	186/2753			0.92 (0.74 to 1.14)
Test for heterogeneity: I ² =78%					
CETP inhibitor					
Background statin	582/18 003	553/18 008	3 🗕		1.05 (0.93 to 1.18)
			0.2 1	5	
			Favours	Favours	

Keene et al *BMJ* 2014;349:g4379

Complexity of HDL

Nature Reviews Drug Discovery 2014; 13:445

Blood Pressure and CVD

UNIVERSITY OF CAMBRIDGE

Lancet 2002; 360: 1903-13 and Hypertension 2007; 50:154

Meta-analysis of Comparative Studies With Atenolol in Hypertension

	Atenolol (n/N)	Placebo (n/N)	Relative risk (fixed) (95% CI)	Weight (%)	Relative risk (fixed) (95% CI
All-cause mortality	1.1	,	1 71-5 7		
ELSA	17/1157	13/1177		2.05	1-33 (0-65-2-73)
HAPPHY	33/1604	26/1599		→ 4·15	1.27 (0.76-2.11)
MRC Old	167/1102	134/1081	_	21.57	1.22 (0.99-1.51)
UKPDS	59/358	75/400		11-29	0.88 (0.64-1.20)
Subtotal	4221	4257		39-06	1.13 (0.97-1.33)
Total events: 276 (atenolol), 248 (other drug)			-		
Test for heterogeneity: χ^2 =3-45, p=0-33					
LIFE	431/4588	383/4605		60-94	1-13 (0-99-1-29)
Subtotal	4588	4605	-	60-94	1.13 (0.99-1.29)
Total events: 431 (atenolol), 383 (other drug)					
Total	8809	8862	-	100.00	1.13 (1.02-1.25)
Total events: 707 (atenolol), 631 (other drug)					
Test for heterogeneity: χ^2 =3·45, p=0-49		_			
Cardiovascular mortality			1 1 1		
ELSA	8/1157	4/1177		1.24	2.03 (0.61-6.74)
MRC Old	95/1102	66/1081		> 1.24	1.41 (1.04-1.91)
UKPDS	32/358	48/400		14.19	0.74 (0.49-1.14)
Subtotal	2617	2658		26.28	1.17 (0.92-1.49)
Total events: 135 (atenolol), 118 (other drug)	LULI	2030		30.20	
Test for heterogeneity: χ^2 =6.66, p=0.04					
LIFE	234/4588	204/4605		63.72	1-15 (0-96-1-38)
Subtotal	4588	4605		63-72	1.15 (0.96-1.38)
Total events: 234 (atenolol), 204 (other drug)	4500	4005		0572	
Total					
Total events: 369 (atenolol). 322 (other drug)	7205	7263		100-00	1.16 (1.00-1.34)
Test for heterogeneity: χ^2 =6-66, p=0-08					
		<u> </u>	07 10 15	7.0	
		0-5		2-0	

Carlberg et al. Lancet 2005;364:1684

Pressure Amplification

UNIVERSITY OF CAMBRIDGE

McEniery et al. Eur Heart J 2014

Central versus Brachial Pressure and Cardiovascular Risk

Source	Year, Country	Population	Design	Parameter	End Point
Saba et al ^{16*} †	1993, United States	Normotensives	Cross-sectional	Carotid Alx	LVMI, carotid thickness
Boutouyrie et al ^{17*} †	1999, France	Hypertensives	Cross-sectional	Carotid PP	Carotid thickness
Boutouyrie et al ^{18*} †	2000, France	Hypertensives	Longitudinal (9-month FU)	Carotid PP	Carotid IMT reduction with treatment
Roman et al ¹⁹	2000, United States	Normotensives, Hypertensives	Cross-sectional	Carotid systolic BP	Relative LV wall thickness
Waddell et al ^{20*} †	2001, Australia	CAD	Cross-sectional	Carotid BP	Extent of CAD
Nishijima et al ^{21*}	2001, Japan	Suspected CAD	Cross-sectional	Aprtic fractional PP	Incident CAD
Nurnberger et al ²²	2002, Germany	Healthy + CVD	Cross-sectional	Carotid Alx	CV risk scores
Philippe et al ^{23*}	2002, France	CAD	Cross-sectional	Aortic PP	Extent of CAD
Hayashi et al²4*	2002, Japan	Suspected CAD	Cross-sectional	Aortic Alx	Incident CAD
De Luca et al ²⁵ †	2004, REASON Study	Hypertensives	Longitudinal (1-year FU)	Carotid PP	LVMI reduction
Weber et al ²⁶	2004, Austria	Suspected CAD	Cross-sectional	Aortic AP, Alx	Incident CAD
Jankowski et al²?*	2004, Poland	CAD	Cross-sectional	Aortic BP	Extent of CAD
Danchin et al ^{28*}	2004, France	Suspected CAD	Cross-sectional	Aortic PP	Incidence and extent of CAD
Booth et al ²⁹	2004, United Kingdom	Systemic vasculitis	Cross-sectional	Aortic Alx	Disease activity
Roman et al ³⁰	2007, United States	High-risk	Cross-sectional	Aortic PP	Carotid IMT and mass
Hashimoto et al ³¹ †	2007, Japan	Hypertensives	Longitudinal (1-year FU)	Aortic Alx	LVMI reduction with treatment

Abx indicates augmentation index; CAD, coronary artery disease; CV, cardiovascular; FU, follow-up; IMT, intima-media thickness; LV, left ventricular; LVMI, left ventricular mass index.

*Central pressure measured directly.

†These studies have shown incremental value of central indices over peripheral BP.

PP and clinical outcome

Hypertension 2007;50:154. & *Eur Heart J* 2010;31:1865.

Comparative Effects of Antihypertensive Drugs Classes on Aortic Pressure ISH

	Perindopril Atenolol		nolol	Lercanidipine		Bendrofluazide		2 Way ANOVA Timo	
Parameter	Placebo	10 wk	Placebo	10 wk	Placebo	10 wk	Placebo	10 wk	Drug
Peripheral SBP, mm Hg	153±3	136±4*	156±2	138±4*	146±2	133±3*	154±3	140±3*	<0.001, 0.1
Peripheral DBP, mm Hg	80±2	75±2*	84±2	76±3*	80±2	79±3	85±2	82±3	<0.001, 0.3
Peripheral PP, mm Hg	72±4	61±4*	72±3	62±3*	66±3	$54 \pm 4^{*}$	69 ± 4	$58 \pm 4*$	<0.001, 0.3
Central SBP, mm Hg	140±4	123±4*	144±3	130±4*	132±2	118±3*	139±2	126±2*	<0.001, 0.02‡
Central PP, mm Hg	58 ± 4	46±3*	59±2	53±3	51 ± 3	38±4*	53 ± 4	42±3*	<0.001, 0.02‡§
P1 height, mm Hg	42±3	36±3*	42±2	35±2*	37±2	30±2*	39±2	32±2*	<0.001, 0.1
PP amplification	1.33 ± 0.08	1.35 ± 0.06	1.24 ± 0.03	1.17±0.02*	1.31 ± 0.04	1.42 ± 0.06	1.33 ± 0.04	1.38 ± 0.04	0.2, 0.03‡
MAP, mm Hg	104±2	96±2*	108±2	97±3*	102±2	97±2	109±2	102±2*	< 0.001, 0.1
HR, bpm	71±3	73±3	67±2	57±3*	73±2	75±3	75±3	77±3	0.4, 0.001†‡§
AP, mm Hg	15±2	10±2*	17±2	19±2	14±2	8±2*	13±2	11±2	0.002, 0.02‡
Alx, %	25±3	20 ± 4	29±2	34±2*	26±2	19±3*	25±3	24±3	0.2, 0.03†‡§
Aortic PWV, m/s	9.01 ± 0.59	9.34 ± 0.47	9.64 ± 0.50	8.82 ± 0.46	9.54 ± 0.60	9.79 ± 0.89	10.25 ± 0.28	10.55 ± 0.57	0.9, 0.4

Table 2. Hemodynamic Indices Before and After the 10-Week Active Therapy Period

McKenzie et al Hypertension 2009;54:409

ASCOT Study n=19,257, mean age 63

UNIVERSITY OF CAMBRIDGE

B Dahlof Lancet 2005;366:895 & CAFÉ. Circulation 2006; 113:

Improving the Process

Nature Reviews | Drug Discovery

Nature Reviews Drug Discovery 2015;14:17

Connecting Excellence in Clinical Research

Global network of top-quality, academic / public based clinical research institutions

